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Fluid flow through a solid matrix is examined by introducing a two-dimensional 
phenomenological model of flow through a unit cell. The effects of inter-cell mixing 
on reductions in the upstream prescribed gradients are studied. The velocity gradient 
is modelled by allowing flows of different average velocities to enter the cell. The exit 
conditions are then determined by solving for the flow field. It is shown that the extent 
of the reduction depends on the geometry, Reynolds number and the magnitude of 
the gradient. Also, some results for reductions in the temperature gradient and a 
regime diagram for gases are presented. 

1. Introduction 
In convection through a solid matrix lateral gradients of velocity and temperature 

can be present, owing to upstream conditions or volumetric sources. A given variation 
in average velocity between two adjacent pores may become less significant further 
downstream as the fluid leaving these pores enters a common pore before eventually 
splitting into separate streams again. The extent of this downstream gradient 
reduction depends on the structure of the solid matrix, the relative significance of 
the inertial force, and the magnitude of the gradient, which, in turn, depends on the 
size of the unit cell in the solid matrix. 

The size of the unit cell and the magnitudes of the gradients can determine whether 
a local volume average of the field equations based on a representative elementary 
volume can be used. For this to be applicable, the representative elementary volume 
must contain a sufficient number of pores (saturated with the fluid)? so that the 
inter-pore mixing mechanism need not be taken into account (Slattery 1972 ; 
Carbonell & Whitaker 1984; Hassanizadeh & Gray 1983). This holds true for many 
saturated porous media where the pore size is very small. For these media the 
Reynolds number based on the lengthscale of the unit cell is relatively low. Also, even 
if the gradients throughout the system are large, the variations in velocity and 
temperature across a unit cell are rather insignificant. As a result, for very small unit- 
cell dimensions, large gradients can be sustained in the medium. 

In treatments similar to the one described here, the flow through solid matrices 
has been studied for predictions of the permeability (Barak & Bear 1981), deviations 
from Darcy’s model at high Reynolds numbers due to detaching of the flow (Barak 
& Bear 1981 ; Stark 1972) and dispersion of tracers (Hinduja, Sundaresan & Jackson 
1980; Carbonell & Whitaker 1983). 

In this paper, based on a two-dimensional phenomenological model, the 

t This study is limited to flow of a single-component and single-phase fluid through a solid matrix 
with periodic microstructure. 

8-2 



222 M .  Kaviany 
mechanisms of inter-pore mixing and the related significant parameters are studied. 
The model is based on laminar flow through an isotropic and non-consolidated rigid 
matrix. The entrance to  the unit cell consists of two ports through which the fluid 
flows at different velocities. These flows mix? in the cell and then exit through similar 
ports at the opposite side of the cell. The Navier-Stokes equation describing this flow 
system is solved numerically through finite-difference approximations. The flow is 
assumed to remain attached in passing through the cell; therefore, the results are 
limited to lower Reynolds numbers. 

2. A phenomenological model 
Figure 1 ( a )  shows the mode to  be considered here. The two streams, u1 and us, 

both Poiseuille flows at x = 0, enter the cell, travel over the back step, impinge on the 
forward steps forming stagnation flows and then move toward the centre of the cell 
and mix. For mathematical simplicity, symmetry is assumed a t  y = 0 and y = 2 + c/a, 
and fully developed flows are assumed a t  the entrance (z = 0) and exit 
(x = (d, + d,)/a + 2b/a + e/a) .  The symbols are defined in figure 1. Depending on the 
value of b/a the flows can accelerate or decelerate when passing through this section. 
Next, they move through the central channel, become partially developed and then 
enter the second chamber, where they impinge on the forward step forming a 
stagnation flow, split and leave through the two exits. 

When non-dimensionalized by applying a (this choice will be explained later), 
(GI + Uz), and p(U1 + U2)2 to  scale length, velocity and pressure, the continuity and 
momentum equations for laminar, constant properties and steady-state flows are 

U,+V, = 0, (1)  

uu,+vu, = -p,+2Re-1(u,,+u,y), 

uv,  + vvy = - p ,  + 2Re-'(v,, + v,,), 
where subscripts x and y indicate differentiation, p is pressure, u and v are the 
longitudinal and lateral velocity components respectively, Re = 2Ga/v is the Reynolds 
number, U = U1 + Uz, the overbar indicating spatial average, and v is the kinematic 
viscosity . 

The boundary conditions for this model are : 

entrance : u1.i = f ( ~ ) ,  uz, i = s(Y)> P = Pi, (4) 

symmetry planes : v = u , = p , = O ,  (5 )  

exit : U,,f = 0, P,,.f = 0 3  

solid boundaries : u = v = o ,  

where i indicates entrance and f indicates final conditions. The average velocities are 

so that U1+GZ = 1. 

The entrance profiles f(y) and g(y) are prescribed Poiseuille velocity profiles. The 
magnitude of GI, is specified ; then Uz, = 1 - G1, and Aili = (GI, i -  U2, i). At the exit 

t The flow 'mixing' is not meant as a vortex or turbulent mixing. 
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FIGURE 1. (a) Schematic of the unit cell considered and ( b )  an example of the distribution of the 
longitudinal velocity at various locations; AGl = 0.5, Re = 0.5. 

the average velocities are computed using the trapezoidal rule (even though the flow 
is nearly Poiseuille in all cases). 

The integration of (1)-(3) subject to (4)-(7) is done numerically through finite- 
difference approximations using a combination of a pressure-correction technique, the 
power-law approximation and the staggered-grid system, as recommended in Patankar 
(1980). This method has been successfully used for the study of flow through porous 
inserts (Kaviany 1985). A uniform grid net of Ay = Ax = 0.1 was used. The standard 
convergence validation, using progressively finer grid nets, was applied and the 
results showed complete convergence. However, the grid net used here proved to be 
relatively accurate and computationally economical. A review of the literature on flow 
over steps (Stark 1972 ; Durst, Melling & Whitelaw 1975; Sinha, Gupta & Oberai 1981 ; 
Rockwell & Naudascher 1979; Dalman, Merkin & McGreavy 1984) indicates that 
the flow remains attached and steady for the range of Reynolds numbers considered 
in this study. 



224 M .  Kaviany 

3. Results and discussion 
Even though the distance between the two streams c is taken to be finite in the 

model, it is expected that the results should also hold for very small values of c such 
that the reduction in Au can be viewed as a reduction in the gradient. 

The results of the numerical integration are given below. Figure l ( b )  shows an 
example of the longitudinal velocity distribution a t  various locations for Aiii = 0.5, 
a = b = c = di = d ,  = e and Re = 0.5.  

Figure 2 shows the change in Au between the entrance and exit for various 
Reynolds numbers. The results, which are for a = b = c = di = d, = e ,  show that the 
difference between Aiii and AG, increases as AGi or Re increase. For a given Aiii and 
for 0 c Re < 0.5 the values of Aiif/Aiii do not change significantly with Re. For 
Re > 0.5 the inertial force becomes progressively more significant as Re increases. As 
will be shown, the extent of mixing after the first 90' turns depends on the inertial 
force. 

3.1. Lengthscale 
There are five linear dimensions in the model : 

(i) The channel half-width, which is the same as the height of the front step just 
past the entrance, a. If a is long enough, the flow will be allowed to make a complete 
turn. 

(ii) The length of the entrance section d,. This length can influence the exit 
velocities in two ways. First, since the two streams have different velocities but the 
same pressure a t  x = 0, the pressure drop in each channel depends on d,  and 
consequently this difference in the pressure drop between the two streams can 
enhance the mixing. Secondly, the flow over a back step also depends on length di. 
However, as long as i t  is not significantly smaller than a orb, this upstream condition 
is not expected to be significant. 

(iii) The distance between the back step and forward step b .  If b/a  is less than unity, 
the flow accelerates while turning through 90" to  enter the common passage. This 

0.8 I 

Aii, 

FIGURE 2. The change in the velocity difference for various values 
of Re and for a = b = c = d = e .  
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results in a further penetration of the flow with larger U into the other stream. The 
reverse takes place for bla greater than unity. 

(iv) The length of the back step at the entrance c. As c la  increases, the two streams 
travel a longer distance before impingement. 

(v) The length of the central channel e. As e/a increases, the combined streams 
are allowed to develop further. However, the flow through this channel is not the 
conventional developing flow where at a far enough downstream distance the flow 
becomes of a boundary-layer type. Instead, the downstream stagnation flow present 
near the end of the cell influences the flow development in this channel. 

(vi) The length of the exit section d,. This length also has two separate influences 
on the exit velocities. First, the two streams develop along the length d,. The 
dimensionless entrance length (i.e. where the centreline velocity is 99 % of its 
fully developed value) for low-Reynolds-number flow through channels is given as 
(Chen 1973) 

0.63 2za 
+0.044Re, Re = -, lx = 

0.036Re + 1 V 
2 e  (9)  

Therefore, for 0.05 < Re < 5 considered here, 1.3 < x, < 1.5. However, even for 
d,/a = 1, the flow is nearly fully developed. Secondly, since the two exiting streams 
have different velocities, the pressure drops they experience along df are different, 
and this would favour an increase in the flow rate of the slower stream. As will be 
shown this difference in pressure drop along d,  is significant. 

Table 1 shows how AU,/AU, varies with changes in bla, cla, dJa, ela and d,/a. While 
an increase in cla allows for a greater reduction in the gradient, an increase in b/a  
results in the opposite. Also given in the table is the tortuosity, defined as the square 
of the ratio of the path actually taken by the fluid particles L to  that taken if the 
rigid matrix did not exist, Lo (Dullien 1979). Here it is simply taken to be 

2d+2b+e+2a 
2d+ 2b+ e 

As can be seen, tortuosity (as used here) does not appear to be the parameter 
describing the extent of gradient destruction. 

Figure 3 shows the influence of the exit length on the difference in exit velocities. 
The results are for a = b = c = d,  = e and Re = 0.5 and 5.  Since the pressure drop 
along d, is smaller for a slower stream, then the final split of the flow favours the slower 
stream. 

The results presented above show that the significant linear dimensions are a, b 
and d,, with a characterizing the channel and primary stagnation flows, b determining 
the acceleration or deceleration of the flows after the 90" turns, and d,  determining 

Geometry 

a = b = c = d, = d, = e 
c = 2a,a = b =d ,  = d, = e 
e =2a ,a  = b = c = d, = d, 

d, = 2a,a = b = c  = d, = e 
d, = 2a,a = b = c = d, = e 

1.96 
1.96 
1.78 
1.65 
1.65 
1.65 

1 .oo 
0.98 
1 .oo 
1.06 
1 .oo 
0.99 

b = 2a,a = c = d, = d, = e 

TABLE 1. Exit velocity for several geometric arrangements, Aiit = 0.8 and Re = 5 
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FIGURE 3. Variation of the difference in exit velocities with respect to the length of the exit 
section d,. The results are for a = 6 = c = d,  = e, Re = 0.5 and 5 and Aiii = 0.8. 

the extent of the difference in pressure drop between the two streams at the exit 
section. 

3.2. Effect of presence of a wall 
When either of the two symmetry planes is replaced by a rigid boundary, the no-slip 
conditions cause a relative retardation of the flow near this boundary. There are two 
possibilities : 

Case (i). The faster flow is close to the wall (such as in vertical-plate natural 
convection if the location of the maximum velocity is in the channel next to the wall). 

Case (ii). The slower flow is next t o  the wall (as in forced convection). 
Consider Aiii = 0.8 and b = a .  Then the wall can be placed at either y = 0 or y = 3 . t  

Figure 4 shows AEf/Aiii for these two cases, as well as the case with no wall present 
and for various values of Re. As expected, case (i) results in a more significant gradient 
reduction, i.e. the presence of the wall causes more reduction if the wall is adjacent 
to the faster-flowing stream. Therefore, for volumetric sources corresponding to  
case (i), the gradient reduction is even more significant. 

3.3. Effect of particle size 

For the results to be consistent, they must show that, as the unit-cell size (or the size 
of the particles making up the matrix) decreases, the gradient reduction becomes 
insignificant. Available results based on the application of the modified Darcy’s law 
(which includes the inertia and boundary terms) shows that for low permeabilitiesJ 
i.e. small unit-cell size, relatively large velocity gradients are present adjacent to the 

t The entrance velocity profile in the channel adjacent to the wall is Poiseuille with 
u(0) = u( 1) = 0, or 4 2 )  = 4 3 )  = 0. 

$ In the analysis of flow through porous media, the unit-cell dimension is taken as (K/s)*,  where 
K is the permeability (m2) and E is the porosity. As is shown here, the height of the front step a 
is the critical cell dimension and i t  is not yet known how a and other dimensions are related to  
(K/e) f .  Some discussion on relating the cell (or particle) size to  the permeability is given in Happel 
& Brenner (1965). 
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confining impermeable walls (natural convection, Hong, Tien & Kaviany 1985; forced 
convection, Kaviany 1985). 

To demonstrate this, consider two rigid matrices, one with a = a,  and the other 
with a = a,, = !p,. Assuming that flows with the same average velocity pass through 
each of the unit cells, then Re,, = ;Re,. Also, for the same entrance gradient 
Aii,, ,, = +At%,, ,. Note that both Aili and Re have decreased for the smaller unit cell, 
which results in a smaller reduction in the gradient. However, since the smaller cell 
has half the longitudinal length of the larger cell, the gradient encounters an extra 
reduction for the same longitudinal length. As an example, for Re, = 5 and Afi,, I = 0.8 
the results show (Aiif/ACi), = 0.85 and (AiiJAfi,),, = 0.95. As Aili decreases, this 
difference between I and I1 also decreases. 

The above example shows that the solid matrices with a smaller unit-cell size 
sustain larger lateral gradients. 

3.4. Heat transfer 
If the two entering streams each has a different specific enthalpy, the exit thermal- 
energy flow rates can be compared with those at the entrance. A non-dimensional 
average energy flow rate is defined as 

q =  Tudy, (11) I,‘ 
where 1’ is the temperature. 

A similar expression is used for z. For simplicity, we assume that ( a )  thermal 
conductivity of the solid and fluid are equal, and (b) axial conduction is negligible. 
Then we have 

(12) uT, + vTy = 2Re-1 Pr-I Tug, 
where Pr = a/v is the Prandtl number and a is the thermal diffusivity. 

This is subject to: 

entrance : q,i = 1, q,, = 0, (13a)  

symmetry planes : Tu = 0. (13b) 
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FIQURE 5. Variation in the exit thermal-energy flow rate as Pr+O and 
Pr+m and for a = b = c = d = e. 

Note that, owing to  this lateral symmetry and to  the absence of axial conduction, 
the net enthalpy transport is by convection only. However, the magnitude of the 
Prandtl number (or the PBclet number = RePr) determines the extent of lateral 
temperature non-uniformity. 

Two cases of special interest are for Pr --f 0 and Pr -t 00. 

(i) As Pr + 0 the lateral diffusion dominates the convection and the temperature 
field becomes uniform. This is the upper limit for the interaction between the two 
streams. For this case we have 

where 

(ii) As Pr-t 00 the transfer of energy from one stream t o  the other is only by 
convection. This is the lower limit for the interaction between the two streams. For 
this case we have 

The results for these cases and forb = a and AEi = 0.8 are given in figure 5. For Re > 3, 
i.e. as the inertial force becomes significant, the thermal-energy exchange between 
the two streams increases. This behaviour has previously been observed by others 
in the study of interstitial heat transfer in porous media (Dybbs & Edwards 1984). 

3.5. Regime diagram for gases 
It is of interest to approximately define the regime over which the gradient reduction 
is significant. This depends on (i) cell structure and dimensions, (ii) the magnitude 
of velocity, (iii) the magnitude of the gradient, and (iv) the fluid. The results obtained 
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FIQURE 6. A diagram showing the regime of significant gradient reduction for gases 
and for the type of rigid matrix considered here. 

here suggest that, rather than adapting the ratio of the pore size to the characteristic 
dimension of the system in determining the significance of inter-pore mixing, the 
magnitude of the pore size should be used. For very small particle sizes, the 
elementary representative volume, used in developing governing differential equa- 
tions, contains several (i.e. three or more) pores and therefore the reduction in the 
gradient due to mixing of flows in adjacent pores need not be considered. 

Since flows through solid matrices are encountered in many natural and engineering 
systems, the ranges of cell size, velocity, and velocity gradients are very large. 
Figure 6 is based on rough approximations of the flow of gases in such systems, and is 
given as a guiding tool only. At higher values of Reynolds number the flow separation 
takes place on passing over the steps and non-Darcian behaviours are observed 
(Stark 1972; Dybbs & Edwards 1984). The results presented here are for relatively 
small Reynolds number, i.e. Re < 5 .  Therefore, for higher values of Re the curves are 
only rough extrapolations (shown by dashed curves). Also, this diagram is based on 
the particular phenomenological model used, and the structure of the cell has a 
significant effect on the extent of gradient reduction. 

4. Summary 
It is shown that, if the linear dimensions of the unit cell in a solid matrix are relatively 

large, then the inter-cell mixing and the resulting reduction in the gradients may be 
significant. Based on the model studied, it was determined that 

(a )  The most important linear dimensions are : 
(i) the entrance channel width a ;  

(ii) the width of the passage after the 90" turns b ;  
(iii) the length of the exit channel d,. 

( b )  The extent of reduction in the lateral gradient depends on: 
(i) the Reynolds number; 
(ii) the magnitude of the gradient. 
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The reduction becomes more significant as the magnitude of these quantities 
increases. 

(c) The solid matrices with smaller linear dimensions can sustain larger lateral 
gradients. 
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